Emotion classification
نویسنده
چکیده
Human emotions can be expressed as negativeto a particular stimulus. In this paper recognition based on Electroencephalogram (EEG) signals electrodes namely F3 and F4 for classification International Affective Picture System (IAPS). Hz), theta (4–8 Hz), alpha (8–16 Hz), beta (16 has been extractedfor every class of emotions combinations of the Entropy attribute extracted from the different frequency bands. using LIBSVM(3 fold cross validation)with RBF kernel. accuracy remains consistently high whenthe combination of entropies extracted from all five frequency band classification. The maximum accuracy of 68.50
منابع مشابه
A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملEmotion models for textual emotion classification
This paper deals with textual emotion classification which gained attention in recent years. Emotion classification is used in user experience, product evaluation, national security, and tutoring applications. It attempts to detect the emotional content in the input text and based on different approaches establish what kind of emotional content is present, if any. Textual emotion classification...
متن کاملAn Emotion Recognition Approach based on Wavelet Transform and Second-Order Difference Plot of ECG
Emotion, as a psychophysiological state, plays an important role in human communications and daily life. Emotion studies related to the physiological signals are recently the subject of many researches. In This study a hybrid feature based approach was proposed to examine affective states. To this effect, Electrocardiogram (ECG) signals of 47 students were recorded using pictorial emotion elici...
متن کاملInvestigating the Robustness of Teager Energy Cepstrum Coefficients for Emotion Recognition in Noisy Conditions
This paper investigated the robustness of Teager Energy Cepstrum Coefficient (TECC) in differentiating emotion categories for speech at different White Gaussian noise levels by comparing the performance with MFCC. Experiments involved the normalized squared error measurement, the multi-classes (four classes) emotion classification and the pair-wise emotion classification. This study included fo...
متن کامل